Фосфолипиды — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 мая 2017; проверки требуют 7 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 мая 2017; проверки требуют 7 правок.
Фосфолипи́ды — сложные липиды, сложные эфиры многоатомных спиртов и высших жирных кислот. Содержат остаток фосфорной кислоты и соединённую с ней добавочную группу атомов различной химической природы.
В зависимости от входящего в их состав многоатомного спирта принято делить фосфолипиды на три группы:
Фосфолипиды — сложные липиды, в которых содержатся жирные кислоты, фосфорная кислота и дополнительная группа атомов, во многих случаях содержащая азот. Они есть во всех живых клетках. Содержатся в нервной ткани, участвуют в доставке жиров, жирных кислот и холестерина.
Фосфолипиды входят в состав всех клеточных мембран. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Наиболее распространённая группа фосфолипидов — фосфоглицериды. К фосфолипидам также относятся фосфосфинголипиды и фосфоинозитиды.
Фосфолипиды — амфифильные вещества. Они состоят из полярной «головки», в состав которой входит глицерин или другой многоатомный спирт, отрицательно заряженный остаток фосфорной кислоты и часто несущая положительный заряд группа атомов, и двух неполярных «хвостов» из остатков жирных кислот. Главная особенность фосфолипидов состоит в том, что «головка» у них гидрофильна, а «хвосты» гидрофобны. Это позволяет при нахождении в толще водной среды образовывать бислой — двойной слой фосфолипидных молекул, где гидрофильные головы с обеих сторон соприкасаются с водой, а гидрофобные хвосты упрятаны внутрь бислоя и тем самым защищены от контакта с водой.
Это определяет многие физические и химические свойства фосфолипидов, например, способность формировать липосомы и биологические мембраны (липидный бислой). Химическая структура полярной «головки» определяет суммарный электрический заряд и ионное состояние фосфолипида. «Хвосты» контактируют с липидным окружением, а «головки» — с водным, так как неполярные жирные хвосты не могут соприкасаться с водой.
Ключевые компании, работающие на мировом рынке фосфолипидов, включают Avanti Polar Lipids, Lipoid GmbH, VAV Life Sciences Pvt. Ltd. [1] и корпорация NOF. [2]
Главный липидный компонент клеточных мембран. Они сопутствуют жирам в пище и служат источником фосфорной кислоты, необходимой для жизни человека.
Фосфолипиды являются важной частью клеточных мембран. Они обеспечивают текучие и пластические свойства мембран клеток и клеточных органеллами, в то время как холестерин обеспечивает жёсткость и стабильность мембран. Как фосфолипиды, так и холестерин часто входят в состав липопротеидов клеточных мембран, но имеются в мембранах и в свободном, не связанном с белками состоянии. Соотношение холестерин/фосфолипиды в основном и определяет текучесть либо жёсткость клеточной мембраны.
Фосфолипиды участвуют в транспорте жиров, жирных кислот и холестерина. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Будучи более гидрофильными, чем холестерин, благодаря наличию в молекуле остатков фосфорной кислоты, фосфолипиды являются своеобразными «растворителями» для холестерина и других высоко гидрофобных соединений. Соотношение холестерин/фосфолипиды в составе липопротеидов плазмы крови наряду с молекулярным весом липопротеидов (ЛПВП, ЛПНП или ЛПОНП) предопределяет степень растворимости холестерина и его атерогенные свойства. Соотношение холестерин/фосфолипиды в составе желчи предопределяет степень литогенности желчи — степень склонности к выпадению холестериновых желчных камней.
Фосфолипиды замедляют синтез коллагена и повышают активность коллагеназы (фермента, разрушающего коллаген).
Производные фосфолипидов инозитол-1,4,5-трифосфат и диацилглицерол — важнейшие внутриклеточные вторичные мессенджеры.
- Т. Т. Берёзов, Б. Ф. Коровкин. Биологическая химия. — М.: Медицина, 1998. — 704 с. — 15 000 экз. — ISBN 5-225-02709-1.
- Devaux P. F. Protein involvement in transmembrane lipid asymmetry // Ann. Rev. Biophys. Biomol. Struct. — 1992. — Vol. 21. — p. 417—439.
- McNeil H. P., Chesterman C. N., Krilis S. A. Immunology and clinical importance of antiphospholipid antibodies // Adv. Immunol. — 1991. — Vol. 49. — p. 193—280.
- Schroit A. J., Zwaal R. F. A. Transbilayer movement of phospholipids in red cell and platelet membrane // Biochem. Biophys. Acta. — 1991. — Vol. 1071. — p. 313—329.
Свойства фосфолипидов — это… Что такое Свойства фосфолипидов?

Фосфолипид
Фосфолипи́ды — сложные липиды, сложные эфиры многоатомных спиртов и высших жирных кислот. Содержат остаток фосфорной кислоты и соединенную с ней добавочную группу атомов различной химической природы.
Классификация фосфолипидов
В зависимости от входящего в их состав многоатомного спирта принято делить фосфолипиды на три группы:
- глицерофосфолипиды (глицерофосфатиды) — содержат остаток глицерина
Свойства фосфолипидов
Фосфолипиды — сложные липиды, в которых содержатся жирные кислоты, фосфорная кислота и дополнительная группа атомов, во многих случаях содержащая азот. Они есть во всех живых клетках. Содержатся в нервной ткани, участвуют в транспорте жиров, жирных кислот и холестерина.
Фосфолипиды входят в состав всех клеточных мембран. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Наиболее распространенная группа Фосфолипидов — фосфоглицериды, также к фосфолипидам относятся фосфосфинголипиды и фосфоинозитиды.
Фосфолипиды — амфифильные вещества. Они состоят из полярной «головки», в состав которой входит глицерин или другой многоатомный спирт, отрицательно заряженный остаток фосфорной кислоты и часто несущая положительный заряд группа атомов, и двух неполярных «хвостов» из остатков жирных кислот. Главная особенность фосфолипидов состоит в том, что «головка» у них гидрофильна, а «хвосты» гидрофобны. Это позволяет при нахождении в толще водной среды образовывать бислой — двойной слой фосфолипидных молекул, где гидрофильные головы с обеих сторон соприкасаются с водой, а гидрофобные хвосты упрятаны внутрь бислоя и тем самым защищены от контакта с водой.
Это определяет многие физические и химические свойства фосфолипидов, например, способность формировать липосомы и биологические мембраны (липидный бислой). Химическая структура полярной «головки» определяет суммарный электрический заряд и ионное состояние фосфолипида. «Хвосты» контактируют с липидным окружением, а «головки» — с водным, так как неполярные жирные хвосты не могут соприкасаться с водой.
Биологическая роль фосфолипидов
Фосфолипиды являются важной частью клеточных мембран. Они обеспечивают текучие и пластические свойства мембран клеток и клеточных органоидов, в то время как холестерин обеспечивает жёсткость и стабильность мембран. Как фосфолипиды, так и холестерин часто входят в состав липопротеидов клеточных мембран, но имеются в мембранах и в свободном, не связанном с белками состоянии. Соотношение холестерин/фосфолипиды в основном и определяет текучесть либо жёсткость клеточной мембраны.
Фосфолипиды участвуют в транспорте жиров, жирных кислот и холестерина. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Будучи более гидрофильными, чем холестерин, благодаря наличию в молекуле остатков фосфорной кислоты, фосфолипиды являются своеобразными «растворителями» для холестерина и других высоко гидрофобных соединений. Соотношение холестерин/фосфолипиды в составе липопротеидов плазмы крови наряду с молекулярным весом липопротеидов (ЛПВП, ЛПНП или ЛПОНП) предопределяет степень растворимости холестерина и его атерогенные свойства. Соотношение холестерин/фосфолипиды в составе желчи предопределяет степень литогенности желчи — степень склонности к выпадению холестериновых желчных камней.
Производные фосфолипидов иозитол 1,4,5-трифосфат и диацилглицерол — важнейшие внутриклеточные вторичные мессенджеры.
См. также
Литература
- Devaux P. F. Protein involvement in transmembrane lipid asymmetry // Ann. Rev. Biophys. Biomol. Struct. — 1992. — Vol. 21. — p. 417 — 439.
- McNeil H. P., Chesterman C. N., Krilis S. A. Immunology and clinical importance of antiphospholipid antibodies // Adv. Immunol. — 1991. — Vol. 49. — p. 193—280.
- Schroit A. J., Zwaal R. F. A. Transbilayer movement of phospholipids in red cell and platelet membrane // Biochem. Biophys. Acta. — 1991. — Vol. 1071. — p. 313—329.
Wikimedia Foundation. 2010.
Использование фосфолипидов в косметике | Журнал «Сырье и Упаковка»
В.А. Аверьянова, к.б.н. |
Фосфолипиды – эмульгаторы и активные вещества для укрепления кожного барьера
Косметологи отмечают, что в последнее время во многих странах, особенно в больших городах, увеличивается количество людей, страдающих от симптомов, связанных с такими состояниями, как сухая, чувствительная или гиперреактивная кожа. Специалисты связывают такое состояние кожи с нарушениями в функционировании липидного барьера рогового слоя. Одной из причин этого явления можно считать содержание в составе косметических рецептур значительных концентраций веществ, способных оказывать разрушающее действие на липидный барьер. В качестве примера таких веществ можно привести ПАВ, которые могут работать в составе косметической рецептуры, том числе и как эмульгаторы. Другая причина – большое количество агрессивных загрязняющих частиц в воздухе больших городов, которые могут инициировать окисление кожного сала. Как результат – число людей, которые считают свою кожу сухой, раздраженной и очень чувствительной все время увеличивается. Можно сказать, что это люди с нарушенной барьерной функцией кожи.
С целью укрепления барьера, в состав косметических рецептур целесообразно вводить такие ингредиенты, как фосфолипиды, которые являются натуральными, биоразлагаемыми и многофункциональными компонентами. Это не только технические добавки, проявляющие эмульгирующие свойства и позволяющие получать ламеллярные композиции, не только вещества, образующие липосомы, и, тем самым, облегчающие доставку активных компонентов в косметике, но и увлажняющие активные компоненты, доставляющие в кожу линолевую и линоленовую кислоты. Было показано, что линоленовая кислота из фосфолипидов проникает довольно глубоко в кожу человека и может работать, как строительный материал – она включается в состав собственных церамидов кожи и способствует укреплению ее естественной барьерной функции [1]. Также есть данные, демонстрирующие, что фосфолипиды подавляют развитие акне, облегчают такие состояния кожи, как нейродермит и псориаз [1]. Сегодня на рынке косметического сырья представлено большое количество продуктов на основе фосфолипидов, которые позволяют создавать готовые композиции с оптимальными косметическими свойствами. Причем это сырье не только импортного, но и отечественного производства.
Химическое строение и свойства фосфолипидов
С химической точки зрения фосфолипиды – это сложные эфиры многоатомных спиртов и высших жирных кислот, которые содержат остаток фосфорной кислоты и соединенную с ней добавочную группу атомов различной химической природы, например, холин в случае фосфатидилхолина или этаноламин в случае фосфатидилэтаноламина. В зависимости от того, какой многоатомный спирт лежит в основе структуры фосфолипида, различают глицерофосфолипиды (на основе глицерина), фосфосфинголипиды (на основе сфингозина) и фосфоинозитиды (на основе инозитола). Наиболее распространены в природе глицерофосфолипиды, в частности, фосфатидилхолин (рис.1), который является основным липидом клеточных мембран.
Рисунок 1. Химическая формула и молекулярная модель фосфатидилхолина
Все глицерофосфолипиды построены по единому плану, и их молекулы стерически хорошо соответствуют друг другу. В то же время, огромное разнообразие фосфолипидов обеспечивается разнообразием жирных кислот, которые входят в состав их молекул. Так, есть несколько десятков природных видов фосфатидилхолина (рис.2).
Рисунок 2. Амфифильное строение молекулы фосфолипидов
Благодаря своему химическому строению фосфолипиды – это амфифильные молекулы. В состав полярной «головки» входят глицерин (или другой многоатомный спирт), отрицательно заряженный остаток фосфорной кислоты и присоединенная к нему группа атомов, часто несущая положительный заряд. Неполярные хвосты – это остатки жирных кислот, присоединенные к многоатомному спирту сложноэфирными связями (Рис 2). В случае лизофосфолипидов (моноацильных фосфолипидов) к остатку глицерина присоединена только одна жирная кислота, в этом случае молекула фосфолипида имеет конусообразную форму и может образовывать мицеллы в водном растворе (Рис.3). Если образование эфирной связи идет по двум гидроксильным группам глицерина, образуется диацилфосфолипид, содержащий остатки двух молекул жирных кислот. Молекула диацилфосфолипида имеет форму цилиндра и в водном растворе образует ламеллярные бислои, в которых гидрофобные хвосты ориентированы внутрь слоя, а гидрофильные головки – наружу (Рис.3). Благодаря этому свойству, фосфолипиды способны формировать биологические мембраны (липидный бислой), липосомы и ламеллярные эмульсии. В составе этих эмульсий фосфолипиды формируют бислои, окружающие масляные капли и стабилизирующие их. Такая структура позволяет увеличить в составе эмульсии количество масел и других липидов, снизить концентрацию других эмульгаторов, а наличие водной фазы позволяет включать в средства водорастворимые биологически активные вещества.
Рисунок 3
Фосфолипиды – эссенциальные вещества, незаменимые для человека. Они не вырабатываются в организме в достаточном количестве и должны поступать с пищей. Их важнейшей функцией является непосредственное участие в строительстве клеточных мембран. Согласно последним исследованиям, большинство людей недополучает до 40% необходимой нормы фосфолипидов. Содержание фосфолипидов в пищевых маслах относительно невелико и редко превышает 2%, наибольшее содержание можно отметить у соевого, подсолнечного масел и масла хлопчатника – 1,7–1,8%.
Будучи эссенциальными компонентами биологических мембран всех живых клеток, фосфолипиды нетоксичны и очень хорошо воспринимаются кожей.
Использование фосфолипидов в косметике
Наиболее распространенным в тканях животных и растений типом фосфолипидов является фосфатидилхолин (лецитин), который состоит из структурных остатков фосфорной кислоты, холина, жирных кислот, глицерина (рис 1). Лецитин является также основным фосфолипидом, используемым в составе косметических рецептур.
Косметический лецитин описывается как смесь фосфолипидов, которая состоит в основном из фосфатидилхолина, но также может включать в себя такие компоненты как жирные кислоты, триглицериды, стеролы, углеводороды и гликолипиды. Лецитины могут быть фракционированы по содержанию фосфатидилхолина, начиная от «сырого» лецитина, содержащего около 15% фосфатидилхолина и значительное количество растительного масла, из которого лецитин был получен, и заканчивая обезжиренным или фракционированным лецитином, с содержанием фосфатидилхолина от 25 до 96%. Источниками лецитина для промышленности могут быть соевые бобы, яйца, молоко, сырье морского происхождения, рапс, хлопчатник и подсолнечник. Жирнокислотный состав изолированных фосфолипидов типичен для каждого конкретного вида сырья и определяет температуру, при которой жирные кислоты меняют свою мобильность. Ниже точки, называемой «температурой перехода из гелевого в жидкокристаллическое состояние», жирные кислоты находятся в жесткой гелевой форме. Выше этого значения температуры они подвижны и находятся в жидкокристаллической или жидкой форме. Фосфолипиды, содержащие полиненасыщенные жирные кислоты, характеризуются очень низкой (ниже 00C) температурой перехода. Это означает, что при температуре 220C, эти липиды находятся в жидкокристаллической форме и при контакте с водой образуют очень мобильные структуры – липосомы. Фосфолипиды, содержащие ненасыщенные жирные кислоты в результате гидрирования могут быть преобразованы в фосфолипиды, содержащие насыщенные жирные кислоты. Такие гидрированные фосфолипиды при температуре кожи находятся в состоянии геля и имеют тенденцию образовывать более жесткие и стабильные мембраноподобные структуры. В последнее время в косметике применяют, в основном, соевый лецитин или лецитин, полученный из другого растительного сырья (рапс, подсолнечник). Также существует тенденция использовать лецитин, полученный не из генно-модифициро- ванной сои.
Лецитин и его производные обладают следующими полезными в косметике свойствами [2]:
- эмульгирование и солюбилизация
- увлажнение
- улучшение барьерной функции, стимулирование синтеза церамидов в коже
- снижение раздражения кожи
- уменьшение размера пор
- уменьшение гиперкератоза
- стимуляция пролиферации клеток
- увеличение активного проникновения других активных ингредиентов в кожу
- кондиционирующие добавки для волос
- образование липосом и активная доставка активных веществ
- увеличение осаждения катионных красителей на волосы.
На российском рынке присутствуют как ведущие мировые поставщики лецитина, так и российские производители. Основное потребление лецитина в России – это пищевая промышленность (больше 95%). Лидерами по объемам ввозимого в Россию лецитина являются компания АDM – 46% от общего объема импорта, Cargrill (13,4%) и др.
Важные коммерческие производные для косметики
Важными коммерческими производными лецитина, применяемыми в косметике, являются лизолецитин, гидроксилированный лецитин, лизофосфатидная кислота и гидрогенизированный лецитин [2] .
Лизолецитин, также называемый лизофосфатидилхолином, получают путем частичного гидролиза фосфатидилхолина, в результате чего удаляется один из остатков жирных кислот. Лизолецитин, как было показано, имеет хорошие эмульгирующие, увлажняющие и солюбилизирующие свойства, а также увеличивает активное проникновение веществ в кожу. Для косметики производят лизолецитин под следующими торговыми названиями: Lysofix Dry (Glycine soja (Soybean) Seed Extract) – поставщик Kemin; Lecinol WS 50 (Lysolecithin, glycerin) – поставщик Nikko Chemical; Alcolec EM и Alcolec C LPC 20 (Lysolecithin) – поставщик American Lecithin; Emultop (Lysolecithin) – поставщик Cargill.
Гидроксилированный лецитин производится путем обработки лецитина перекисью водорода и органическими кислотами, например, такими, как уксусная или молочная кислоты. Гидроксилированный лецитин значительно более гидрофильный, чем обычный лецитин, является очень стабильным и имеет отличные увлажняющие, эмульгирующие и солюбилизирующие свойства. В качестве примеров можно привести Yelkin 1018 (Lecithin) производства ADM и NET HS-70 (Hydroxylated lecithin, Glycerin) производства Nikko Chemical.
Лизофосфатидная кислота (LPA) – это фосфатированный эфир глицерина, который получают удалением холина из молекулы лецитина. LPA в косметике имеет свойство контролировать салоотделение, уменьшать поры, сокращать морщины, восстанавливать кожный барьер и усиливает проникновение активов в кожу. Nikkol Chemical предлагает лизофосфатидную кислоту для косметики под торговой маркой DisaPore 20 / BarPore 42 (Lecithin ).
Гидрированный (гидрогенизированный) лецитин получают взаимодействием водорода с лецитином. В результате образуется очень стабильный воскообразный материал. Самые полезные разновидности содержат 20–30% фосфатидилхолина и являются не раздражающими кожу эмульгаторами с отличными увлажняющими свойствами. Они способствуют доставке как маслорастворимых, так и водорастворимых активов. Гидрированный фосфатидилхолин обладает выраженной гидрофильностью. Одна молекула гидрированного фосфатидилхолина способна связать 20 молекул воды и «пронести» эту воду на себе в более глубокие слои эпидермиса, оказывая прямое увлажняющее действие. Предлагают гидрированный лецитин под следующими торговыми наименованиями: Lecinol S-10 (Hydrogenated lecithin) от Nikkol Chemical; Epikuron 100 / 200H (Hydrogenated lecithin) от Cargill; Emulmetik 300 и 320 (Hydrogenated lecithin) производства Lucas Meyer. Lipoid Cosmetics AG предлагает гидрированный фосфатидилхолин соевых бобов под торговой маркой Skin Lipid Matrix (Hidrogenated soy bean phosphatidylcholine).
В России сырье для косметики с высоким содержанием фосфолипидов производит из куриного сырья компания Техкон. В качестве примера ее продукции можно привести Липокомп (INCI: Chicken oil) и Липофолк (INCI: Eggs yolk extract). Эти продукты в составе рецептур являются богатым источником ненасыщенных фосфолипидов (до 75%), борются с сухостью кожи и способствуют глубокому проникновению в кожу других биологически активных веществ.
Перспективы российского рынка лецитина и производства лецитина в России
В России наметились неплохие перспективы для развития отечественного производства лецитина. Что немаловажно в случае соевых продуктов, речь идет о не содержащей ГМО продукции. Так, в 2009 году были запущены три завода, которые начали производить отечественный соевый лецитин: «Содружество Соя» (Калининград), «Амурагроцентр» (Благовещенск), «Кубаньагропрод» (станица Тбилисская, Краснодарский край). На этих заводах установлено современное оборудование зарубежного производства, позволяющее
получать лецитин, по качеству не уступающий импортному. Плановые мощности трех новых производств по выпуску лецитина довольно внушительны и составляют более 4,5 тыс. тонн в год, что сопоставимо с объемом импорта лецитина в 2008 году [3]. В 2016 году планируется запустить производство лецитина в Алтайском крае на предприятии «АгроСиб-Раздолье». Таким образом, созданы предпосылки для постепенного замещения импортного лецитина конкурентоспособным и качественным отечественным продуктом.
Согласно экспортным прогнозам, потенциал российского рынка лецитинов очень велик. При активном внедрении лецитина в пищевую, фармацевтическую и косметическую отрасли, а также распространении лецитина для технического применения, совокупное потребление лецитина может увеличиться в несколько раз. По экспертным оценкам потребление лецитина пищевой отраслью может вырасти в 3 раза до 15 тыс. тонн. Учитывая американский и европейский опыт технического применения лецитина, фактический потенциал для роста потребления лецитина в России значительно выше. Эксперты прогнозируют, что развитие российского рынка будет происходить вместе с его структурным изменением. С одной стороны, очевидно постепенное вытеснение импортных лецитинов отечественными аналогами. С другой стороны, можно ожидать изменения пропорций ГМО и не ГМО лецитинов на российском рынке со значительным увеличением доли не ГМО как отечественных, так и импортных лецитинов. Более того, дальнейшее развитие отечественного производства лецитина может переориентировать Россию с импорта на частичный экспорт этого продукта.
Литература
- P. van Hoogevest, D. Prusseit, R. Wajda «Phospholipids- Natural Functional Ingredients and Actives for Cosmetic Products», SOFW-Journal,139, 8–2013, p. 9–14.
- G. Deckner «Use of Phospholipids in Personal Care Products», http://www.ulprospector.com
- Ольга Кузнецова, Лецитин – король на рынке натуральных эмульгаторов http://bfi-online.ru/
Характеристика фосфолипидов, гликолипидов их роль в жизнедеятельности
Фосфолипи́ды — сложные липиды, сложные эфиры многоатомных спиртов и высших жирных кислот. Содержат остаток фосфорной кислоты и соединенную с ней добавочную группу атомов различной химической природы.
Фосфолипиды — сложные липиды, в которых содержатся жирные кислоты, фосфорная кислота и дополнительная группа атомов, во многих случаях содержащая азот. Они есть во всех живых клетках. Содержатся в нервной ткани, участвуют в транспорте жиров, жирных кислот и холестерина.
Фосфолипиды входят в состав всех клеточных мембран. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Наиболее распространенная группа Фосфолипидов — фосфоглицериды, также к фосфолипидам относятся фосфосфинголипиды и фосфоинозитиды.
Фосфолипиды — амфифильные вещества. Они состоят из полярной «головки», в состав которой входит глицерин или другой многоатомный спирт, отрицательно заряженный остаток фосфорной кислоты и часто несущая положительный заряд группа атомов, и двух неполярных «хвостов» из остатков жирных кислот. Главная особенность фосфолипидов состоит в том, что «головка» у них гидрофильна, а «хвосты» гидрофобны. Это позволяет при нахождении в толще водной среды образовывать бислой — двойной слой фосфолипидных молекул, где гидрофильные головы с обеих сторон соприкасаются с водой, а гидрофобные хвосты упрятаны внутрь бислоя и тем самым защищены от контакта с водой.
Это определяет многие физические и химические свойства фосфолипидов, например, способность формировать липосомы и биологические мембраны (липидный бислой). Химическая структура полярной «головки» определяет суммарный электрический заряд и ионное состояние фосфолипида. «Хвосты» контактируют с липидным окружением, а «головки» — с водным, так как неполярные жирные хвосты не могут соприкасаться с водой.
Биологическая роль фосфолипидов
Главный липидный компонент клеточных мембран. Они сопутствуют жирам в пище и служат источником фосфорной кислоты, необходимый для жизни человека.
Фосфолипиды являются важной частью клеточных мембран. Они обеспечивают текучие и пластические свойства мембран клеток и клеточных органоидов, в то время как холестерин обеспечивает жёсткость и стабильность мембран. Как фосфолипиды, так и холестерин часто входят в состав липопротеидов клеточных мембран, но имеются в мембранах и в свободном, не связанном с белками состоянии. Соотношение холестерин/фосфолипиды в основном и определяет текучесть либо жёсткость клеточной мембраны.
Фосфолипиды участвуют в транспорте жиров, жирных кислот и холестерина. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Будучи более гидрофильными, чем холестерин, благодаря наличию в молекуле остатков фосфорной кислоты, фосфолипиды являются своеобразными «растворителями» для холестерина и других высоко гидрофобных соединений. Соотношение холестерин/фосфолипиды в составе липопротеидов плазмы крови наряду с молекулярным весом липопротеидов (ЛПВП, ЛПНП или ЛПОНП) предопределяет степень растворимости холестерина и его атерогенные свойства. Соотношение холестерин/фосфолипиды в составе желчи предопределяет степень литогенности желчи — степень склонности к выпадению холестериновых желчных камней.
Гликолипиды — (от греч. γλυκός (glykos) — сладкий и λίπος (lípos) — жир) сложные липиды, образующиеся в результате соединениялипидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.
Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.
Классификация и функции
Главной формой гликолипидов в животных тканях являются гликосфинголипиды. Они содержат церамид, а также один или несколько остатков сахаров. Двумя простейшими соединениями этой группы являются галактозилцерамид (GalCer) и глюкозилцерамид (ClcCer). Галактозилцерамид — главный гликосфинголипид мозга и других нервных тканей, но в небольших количествах он встречается и во многих других тканях. Простые гликосфинголипиды в тканях, отличных от нервной, представлены главным образом глюкозилцерамидом; в небольших количествах он имеется и в ткани мозга.
Гликосфинголипиды, являющиеся компонентами наружного слоя плазматической мембраны, могут участвовать в межклеточных взаимодействиях и контактах. Некоторые из них являются антигенами, например антиген Форссмана и вещества, определяющиегруппы крови системы АВ0. Сходные олигосахаридные цепи обнаружены и у других гликопротеинов плазматической мембраны. Ряд ганглиозидов функционирует в качестве рецепторов бактериальных токсинов (например, холерного токсина, который запускает процесс активации аденилатциклазы).
37. Классификация и особенности строения РНК.
РНК – это полинуклеотиды, но состоят только из одной цепи, их мол.масса меньше, чем у ДНК. Кроме этого, они отличаются следующим: 1) количество РНК в клетке зависит от возраста, физиологического состояния, органной принадлежности клетки; 2) в мононуклеотидах РНК содержатся рибоза, вместо тимина урацил; 3) для РНК не характерны правила Чаргаффа; 4) в РНК больше минорных оснований, чем в ДНК, при этом в т-РНК количество минорных оснований приближается к 50. Все РНК синтезируются на ДНК, этот процесс называется транскрипцией.
В зависимости от локализации в клетке, функции различают 3 вида РНК: м-РНК (матричная, или информационная), транспортная – т-РНК, рибосомальная –р-РНК.
М-РНК
Открыта в 1961 году Жакобом и Мано. Она составляет всего 2-3% от общего количества РНК клетки. Эта РНК не имеет жесткой специфической структуры и ее полинуклеотидная цепь образует изогнутые петли. В нерабочем состоянии м-РНК собрана в складки, свернута в клубок, связана с белком; а во время функционирования цепь расправляется. Матричные РНК синтезируются на ДНК в ядре. Процесс называется транскрипция (списывание).
Роль м-РНК – она несет информацию об аминокислотной последовательности (т.е. о первичной структуре) синтезируемого белка. Место каждой аминокислоты в молекуле белка закодировано определенной последовательностью нуклеотидов в цепи м-РНК, т.е. в м-РНК имеются «кодовые слова» для каждой аминокислоты – триплеты, или кодоны, или генетические коды.
Свойства генетического кода: Генетическому коду присущи:
1) триплетность. Из 4-х возможных мононуклеотидов м-РНК (УМФ, ГМФ, АМФ, ЦМФ) можно построить по правилам перестановки 64 кодона. 61 кодон шифрует 20 аминокислот, а 3 кодона (УАА, УАГ, УГА) не кодируют ни одной аминокислоты. Они играют роль терминирующих (или «стоп-кодонов»), т.к. на них останавливается синтез п/п цепи. Полный кодовый словарь представлен на таблице;
2)неперекрещиваемость – списывание информации идет только в одном направлении;
непрерывность – код является линейным, однонаправленным; не прерывается. Работает по принципу: одна м-РНК-один белок
универсальность, т.е. одна и та же аминокислота у всех живых организмов кодируется одинаковыми кодами у всех живых существ;
5) вырожденность (избыточность). Первые две буквы кодона определяют его специфичность, третья менее специфична. Известно 20 аминокислот, а кодонов 61, следовательно, большинство аминокислот кодируется несколькими кодонами (2-6).
Т.о., м-РНК принимает непосредственное участие в биосинтезе белка. Основной постулат молекулярной биологии, показывающий направление переноса генетической информации: ДНКàРНКàБелок. Однако, в 1974 году американские ученые Темин и Балтимор показали возможность считывания информации и в обратном направлении с РНК на ДНК: ДНК↔РНКàбелок. Этот процесс идет с участием фермента ревертазы. С его помощью можно синтезировать участок ДНК по м-РНК и перенести этот синтезированный ген в другие объекты, что используется генной инженерией.
Р-РНК
на долю этого вида РНК приходится более 80% от всей массы РНК клетки. Она входит в состав рибосом. Рибосомы – это РНП, состоящие на 65% из р-РНК и на 35% из белка. Полинуклеотидная цепь р-РНК легко изгибается и укладывается вместе с белком в компактные тельца. Рибосома состоит из 2-х субъдиниц – большой и малой (соотношение их 2,5:1). В рибосоме различают 2 участка – А (аминокислотный, или участок узнавания) и Р – пептидный, здесь присоединяется п/п цепь. Эти центры расположены на контактирующих поверхностях обеих субъдиниц. Рибосомы могут свободно перемещаться в клетке, что дает возможность синтезировать белки в клетке там, где это необходимо. Рибосомы мало специфичны и могут считывать информацию с чужеродных м-РНК, вместе с м-РНК рибосомы образуют матрицу. Роль р-РНК – обуславливает количество синтезируемого белка.
Т-РНК
этот вид т-РНК изучен лучше всего, составляет 10% всей клеточной РНК. Содержится в цитоплазме, мол.масса небольшая (20тыс.Da) состоит из 70-80 нуклеотидов. Основная роль – транспорт и установка аминокислот на комплиментарном кодоне м-РНК. т-РНК специфичны к аминокислотам, что обеспечивается ферментом аминоацилсинтетазой. В неактивном состоянии она свернута в клубочек, а в активном имеет вид трилистника (клеверного листа). В молекуле т-РНК различают несколько участков: а) акцепторный стебель с последовательностью нуклеотидов АЦЦ, к нему присоединяется аминокислота. Б) участок для присоединения к рибосоме; в) антикодон – участок, комплиментарный кодону м-РНК, который кодирует аминокислоту, присоединенную к данной т-РНК . Особенностью первичной структуры т-РНК является то, что они содержат минорные, или модифицированные основания (7-метилгуанин, гипоксантин, дигидроурацил, псевдоурацил, 4-тиоурацил), которые способны к неклассическому спариванию. Это ускоряет белковый синтез. Т.о., т-РНК «метит» аминокислоту, придавая ей специфичность и способствует установлению аминокислоты на определенный участок м-РНК.
Репликация
Репликация – это многоэтапный процесс, в результате которого из каждой молекулы ДНК образуется 2 абсолютно идентичные, «дочерние» НК. Именно с деления ДНК начинается процесс деления клетки.
Репликация идет полуконсервативным путем: у каждой дочерней ДНК одна из цепей – исходная (материнская), а вторая вновь образованная (дочерняя) (опыты Мезельсона и Сталя). В процессе репликации участвует ряд ферментов: расплетающие ферменты, ДНК-полимеразы, ДНК-лигазы, ДНК-зависимые РНК-полимеразы.
Этапы репликации
1.Деспирализация – последовательное «раскручивание» материнской ДНК по всей длине молекулы. Это происходит со скоростью 18000 оборотов в минуту . Участвует фермент гираза.
2.Разрыв водородных связей между азотистыми основаниями полинуклеотидных цепей, при этом происходит расхождение цепей и образуется репликативная вилка. 1 и 2 этапы ускоряет АТФ-зависимый комплекс ферментов, названный хеликазой. На разделение каждой пары оснований требуется 2 АТФ. Каждая из разделенных цепей ДНК соединяется с ДНК-связывающим белком, который препятствует обратному восстановлению цепей
3.комплементарная подстройка дНТФ к освободившимся пуриновым и пиримидиновым основаниям материнских цепей ДНК за счет водородных связей
4.Отщепление от дНТФ молекул пирофосфатов (РР), а выделяющаяся энергия идет на образование фосфорнодиэфирных связей между дезоксирибозами и остатками фосфорной кислоты двух рядом расположенных новых молекул дМН. . Эту стадию ускоряет ДНК-полимераза
5.респирализация полинуклеотидных цепей.
Т.о., происходит образование дочерней молекулы ДНК. Затем делится ядро, цитоплазма, другие клеточные структуры. Заканчивается процесс образованием 2-х дочерних клеток, ядра которых получили совершенно идентичные ДНК. Т.о., вся генетическая информация, хранящаяся в ДНК материнских клеток, передается в ДНК дочерних клеток. В этом заключается передача и сохранение наследственных признаков.
Вторая роль ДНК заключается в кодировании первичной структуры белков, синтезируемых клеткой. При этом в синтезе специфических белков ДНК принимает косвенное, а не прямое участие. Оно состоит в том, что на ДНК происходит синтез всех РНК, которые уже непосредственно участвуют в процессе образования клеточных белков. Синтез молекул РНК называется транскрипцией.
Транскрипция.
При транскрипции идет синтез молекул РНК всех типов, т.к. на молекуле ДНК имеются участки, кодирующие первичную структуру каждого вида РНК. участок ДНК, где записана информация о строении РНК, называется транскриптон, или оперон. Транскрипция – это переписывание генетической информации с определенного оперона ДНК. Этот процесс имеет как сходства, так и различия с репликацией.
Сходства: 1) оба процесса начинаются с деспирализации ДНК; 2) после деспирализации разрываются водородные связи между азотистыми основаниями обеих цепей ДНК; 3) к освободившимся основаниям цепей строго комплементарно подстраиваются НТФ; 4) за счет разрыва макроэргических связей при отщеплении пирофосфатов идет образование водородных связей между азотистыми основаниями.
Отличия: 1) при репликации расплетается вся молекула ДНК, а при транскрипции только участок ее, соответствующий определенному транскриптону; 2) при транскрипции подстраиваются НТФ, содержащие рибозу, а вместо тимина урацил; 3) списывание информации идет только с определенного участка одной цепи ДНК; 4) после образования РНК водородные связи между азотистыми основаниями цепи ДНК и вновь синтезированной цепи РНК разрываются и последняя соскальзывает с ДНК.
Для нормального функционирования любой РНК необходимо, чтобы ее первичная структура состояла только из участков, списанных с экзонов ДНК.
Первоначально образованные РНК еще незрелые и называются пре-м-РНК, пре-т-РНК, пре-р-РНК. Эти пре-РНК подвергаются процессингу, созреванию. Вначале с участием специальных ферментов вырезаются «молчащие» участки, а затем информативные участки «сшиваются», образуя целую полинуклеотидную цепь. «Сшивание» называется сплайсингом. Последующие превращения специфичны для каждого вида РНК.
Для м-РНК – это кэпирование или «надевание шапочки», т.е присоединение к начальному концу (к 5’) участку 7-метилгуанозина через три остатка фосфорной кислоты, это «голова» м-РНК. К конечному участку (к 3’) присоединяется полиаденилат (состоит из 100-200 остатков АМФ), образуется «хвост» м-РНК. Такая маркировка необходима для обозначения направления считывания информации в процессе биосинтеза белка.
Для т-РНК. После освобождения от неинформативных участков в т-РНК происходит модификация оснований – появляются минорные основания (в результате метилирования и др. реакций).
Рекомендуемые страницы:
Воспользуйтесь поиском по сайту:
Фосфолипиды — это… Что такое Фосфолипиды?

Фосфолипи́ды — сложные липиды, сложные эфиры многоатомных спиртов и высших жирных кислот. Содержат остаток фосфорной кислоты и соединенную с ней добавочную группу атомов различной химической природы.
Классификация фосфолипидов
В зависимости от входящего в их состав многоатомного спирта принято делить фосфолипиды на три группы:
- глицерофосфолипиды (глицерофосфатиды) — содержат остаток глицерина
Свойства фосфолипидов
Фосфолипиды — сложные липиды, в которых содержатся жирные кислоты, фосфорная кислота и дополнительная группа атомов, во многих случаях содержащая азот. Они есть во всех живых клетках. Содержатся в нервной ткани, участвуют в транспорте жиров, жирных кислот и холестерина.
Фосфолипиды входят в состав всех клеточных мембран. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Наиболее распространенная группа Фосфолипидов — фосфоглицериды, также к фосфолипидам относятся фосфосфинголипиды и фосфоинозитиды.
Фосфолипиды — амфифильные вещества. Они состоят из полярной «головки», в состав которой входит глицерин или другой многоатомный спирт, отрицательно заряженный остаток фосфорной кислоты и часто несущая положительный заряд группа атомов, и двух неполярных «хвостов» из остатков жирных кислот. Главная особенность фосфолипидов состоит в том, что «головка» у них гидрофильна, а «хвосты» гидрофобны. Это позволяет при нахождении в толще водной среды образовывать бислой — двойной слой фосфолипидных молекул, где гидрофильные головы с обеих сторон соприкасаются с водой, а гидрофобные хвосты упрятаны внутрь бислоя и тем самым защищены от контакта с водой.
Это определяет многие физические и химические свойства фосфолипидов, например, способность формировать липосомы и биологические мембраны (липидный бислой). Химическая структура полярной «головки» определяет суммарный электрический заряд и ионное состояние фосфолипида. «Хвосты» контактируют с липидным окружением, а «головки» — с водным, так как неполярные жирные хвосты не могут соприкасаться с водой.
Биологическая роль фосфолипидов
Главный липидный компонент клеточных мембран. Они сопутствуют жирам в пище и служат источником фосфорной кислоты, необходимый для жизни человека.
Фосфолипиды являются важной частью клеточных мембран. Они обеспечивают текучие и пластические свойства мембран клеток и клеточных органоидов, в то время как холестерин обеспечивает жёсткость и стабильность мембран. Как фосфолипиды, так и холестерин часто входят в состав липопротеидов клеточных мембран, но имеются в мембранах и в свободном, не связанном с белками состоянии. Соотношение холестерин/фосфолипиды в основном и определяет текучесть либо жёсткость клеточной мембраны.
Фосфолипиды участвуют в транспорте жиров, жирных кислот и холестерина. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Будучи более гидрофильными, чем холестерин, благодаря наличию в молекуле остатков фосфорной кислоты, фосфолипиды являются своеобразными «растворителями» для холестерина и других высоко гидрофобных соединений. Соотношение холестерин/фосфолипиды в составе липопротеидов плазмы крови наряду с молекулярным весом липопротеидов (ЛПВП, ЛПНП или ЛПОНП) предопределяет степень растворимости холестерина и его атерогенные свойства. Соотношение холестерин/фосфолипиды в составе желчи предопределяет степень литогенности желчи — степень склонности к выпадению холестериновых желчных камней.
Фосфолипиды замедляют синтез коллагена и повышают активность коллагеназы (фермента, разрушающего коллаген). Поскольку коллаген определяет замещение эпителиальной ткани соединительной, фосфолипиды оказывают противорубцовый (антифибротический) эффект[источник не указан 277 дней].
Производные фосфолипидов инозитол 1,4,5-трифосфат и диацилглицерол — важнейшие внутриклеточные вторичные мессенджеры.
См. также
Примечания
Литература
- Devaux P. F. Protein involvement in transmembrane lipid asymmetry // Ann. Rev. Biophys. Biomol. Struct. — 1992. — Vol. 21. — p. 417 — 439.
- McNeil H. P., Chesterman C. N., Krilis S. A. Immunology and clinical importance of antiphospholipid antibodies // Adv. Immunol. — 1991. — Vol. 49. — p. 193—280.
- Schroit A. J., Zwaal R. F. A. Transbilayer movement of phospholipids in red cell and platelet membrane // Biochem. Biophys. Acta. — 1991. — Vol. 1071. — p. 313—329.
Характеристика фосфолипидов, гликолипидов их роль в жизнедеятельности
Фосфолипи́ды — сложные липиды, сложные эфиры многоатомных спиртов и высших жирных кислот. Содержат остаток фосфорной кислоты и соединенную с ней добавочную группу атомов различной химической природы.
Фосфолипиды — сложные липиды, в которых содержатся жирные кислоты, фосфорная кислота и дополнительная группа атомов, во многих случаях содержащая азот. Они есть во всех живых клетках. Содержатся в нервной ткани, участвуют в транспорте жиров, жирных кислот и холестерина.
Фосфолипиды входят в состав всех клеточных мембран. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Наиболее распространенная группа Фосфолипидов — фосфоглицериды, также к фосфолипидам относятся фосфосфинголипиды и фосфоинозитиды.
Фосфолипиды — амфифильные вещества. Они состоят из полярной «головки», в состав которой входит глицерин или другой многоатомный спирт, отрицательно заряженный остаток фосфорной кислоты и часто несущая положительный заряд группа атомов, и двух неполярных «хвостов» из остатков жирных кислот. Главная особенность фосфолипидов состоит в том, что «головка» у них гидрофильна, а «хвосты» гидрофобны. Это позволяет при нахождении в толще водной среды образовывать бислой — двойной слой фосфолипидных молекул, где гидрофильные головы с обеих сторон соприкасаются с водой, а гидрофобные хвосты упрятаны внутрь бислоя и тем самым защищены от контакта с водой.
Это определяет многие физические и химические свойства фосфолипидов, например, способность формировать липосомы и биологические мембраны (липидный бислой). Химическая структура полярной «головки» определяет суммарный электрический заряд и ионное состояние фосфолипида. «Хвосты» контактируют с липидным окружением, а «головки» — с водным, так как неполярные жирные хвосты не могут соприкасаться с водой.
Биологическая роль фосфолипидов
Главный липидный компонент клеточных мембран. Они сопутствуют жирам в пище и служат источником фосфорной кислоты, необходимый для жизни человека.
Фосфолипиды являются важной частью клеточных мембран. Они обеспечивают текучие и пластические свойства мембран клеток и клеточных органоидов, в то время как холестерин обеспечивает жёсткость и стабильность мембран. Как фосфолипиды, так и холестерин часто входят в состав липопротеидов клеточных мембран, но имеются в мембранах и в свободном, не связанном с белками состоянии. Соотношение холестерин/фосфолипиды в основном и определяет текучесть либо жёсткость клеточной мембраны.
Фосфолипиды участвуют в транспорте жиров, жирных кислот и холестерина. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Будучи более гидрофильными, чем холестерин, благодаря наличию в молекуле остатков фосфорной кислоты, фосфолипиды являются своеобразными «растворителями» для холестерина и других высоко гидрофобных соединений. Соотношение холестерин/фосфолипиды в составе липопротеидов плазмы крови наряду с молекулярным весом липопротеидов (ЛПВП, ЛПНП или ЛПОНП) предопределяет степень растворимости холестерина и его атерогенные свойства. Соотношение холестерин/фосфолипиды в составе желчи предопределяет степень литогенности желчи — степень склонности к выпадению холестериновых желчных камней.
Гликолипиды — (от греч. γλυκός (glykos) — сладкий и λίπος (lípos) — жир) сложные липиды, образующиеся в результате соединениялипидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.
Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.
Фосфолипиды, их строение, свойства, роль
Фосфолипиды широко распространены в животных, растительных тканях и микроорганизмах. Они являются поверхностноактивными веществами содержатся главным образом в клеточных мембранах. Значительные количества фосфолипидов содержатся в сердце, печени, нервной ткани человека и животных, у растений в соевых бобах, семенах подсолнечника, зародышах пшеницы.
Фосфолипиды легко образуют комплексы с белками и другими липидами, чем и объясняется их участие в формировании клеточных мембран. Из них состоят оболочки жировых шариков молока. Фосфолипиды делят на глицерофосфолипиды и сфингофосфолипиды.
Глицерофосфолипиды являются сложными эфирами полярных веществ с фосфатидной кислотой:
R — насыщенная жирная кислота: пальмитиновая, стеариновая и др.
R1- ненасыщенная жирная кислота с 1-4 двойными связями: олеиновая, линолевая и др.
Фосфатидная к-та или диацилглицеринфосфат, является важным промежуточным соединением при биосинтезе и жиров и глицерофосфолипидов, т.к. остаток фосфорной кислоты может образовать сложноэфирную связь с полярными веществами, такими как:

В зависимости от присоединяемого спирта образуется тип глицерофосфолипида.
![]() |
Например:
Каждый тип в свою очередь может иметь большое число молекул различающихся жирными кислотами.
Характерным для всех глицерофосфолипидов является то, что одна часть молекулы (радикалы жирных к-т) неполярна, гидрофобная, другая — полярна, гидрофильная, благодаря (-) заряду остатка фосфата и (+) заряду аминогруппы спирта. Строение и свойства обуславливают структурную функцию глицерофосфолипидов и их участие в избирательной проницаемости мембран.
В тканях человека, животных, растений в больших количествах содержатся фосфатидилхолины и фосфатидилэтаноламины, в листьях около 50% от общего содержания липидов приходится на фосфатидилглицерины хлоропластов.
Сфингофосфолипиды — также важные компоненты мембран растений и животных. Наиболее распространенными являютсясфингомиелины. Они имеют полярную голову и два неполярных хвоста, т.к. содержат двухатомный ненасыщенный (реже насыщенный) аминоспирт сфингозин, жирную кислоту, фосфат и холин:
из жирных кислот чаще встречаются стеариновая (около 50 %) лигноцериновая и нервоновая.
Сфингомиелины составляют 20 % всех липидов мозга. Ими богаты нервная ткань, селезёнка, лёгкие, почки, поджелудочная железа.